LCP Compact Foot/Compact Hand.

Technique Guide
LCP Compact Foot/Compact Hand

Table of contents

Indications 2
LCP system description 3
Implants 5
Specific instruments 8
Instruments overview 9
Surgical technique 10
Insertion of standards screws 12
Insertion of locking screws 14
Implant removal 16

Warning
This description is not sufficient for immediate application of the instrumentation. Instruction by a surgeon experienced in handling this instrumentation is highly recommended.
LCP Compact Foot/Compact Hand

Indications

LCP plates may in principle be used for the same indications as for the corresponding standard plates.

Thanks to the angular stability provided by the plate-screw connection, better clinical results can be obtained in patients with metaphyseal fractures, comminuted fractures and osteoporotic bone.

Possible indications for implants of size 2.0 and 2.4 include:
- Fractures of the phalanges
- Fractures of the metacarpals and metatarsals (II–V)
- Fractures of the distal radius (double-plate technique)
- Osteotomies and arthrodeses on the hand and foot (e.g. TMT [II–V] fusions)
- Subcapital radial head fracture
- As an additional implant with small fragments

Possible indications for implants of size 2.7 include:
- Fractures of metatarsal I
- Fractures of the tarsals
- MTP 1 fusions
- Osteotomies and arthrodeses of the tarsals (e.g. calcaneo-cuboidal fusion)
The Combi-hole

The LCP (Locking Compression Plate) system offers the surgeon the choice, preoperatively and intraoperatively, of using either standard screws or locking screws – or a combination of the two screw types – for fracture fixation.

Experience in the use of LC-DCP or DCP plates or instruction by a surgeon with experience of their use is recommended.

Tapered, threaded hole for locking screws (A)

The self-tapping locking screws can be locked in the tapered threaded hole to ensure angular stability. Plate and screw systems in which the screws are locked in the plate function according to the principle of an internal fixator and are used to resolve the following problem situations:

– Primary intraoperative loss of reduction
– Secondary postoperative loss of reduction, particularly in cases of osteoporosis or poor bone quality or of comminuted fractures without bony support
– Compression of the periosteum and the resulting impairment of cortical circulation

Note: To avoid the phenomenon of cold welding of plates and screws, we recommend the use of a screwdriver shaft with a mini quick coupling and appropriate handle (311.01X) or a torque limiter (511.77X).

Functional principle of the internal fixator

When LCP plates are used with angularly stable locking screws, the plate and screws together form a stable system; the stability of the fracture is mainly dependent on the strength of the resulting assembly. Since the plate does not need to be compressed against the bone, blood flow to the bone is not additionally impaired.
DC hole for standard screws (B)

The DC hole corresponds to the DCU (Dynamic Compression Unit) of the LC-DCP plate and is designed for standard cortex screws. As with any standard LC-DCP plate, axial compression of the fracture can be achieved by predrilling off-centre. Lag screws can also be angled laterally and longitudinally in relation to the plate for interfragmental compression. The DC hole is not suitable for the insertion of a locking screw.

Note: The standard screw must be placed first within a fragment in order to achieve compression.

Functional principle of absolute stability

Securing the plate with standard screws creates friction between the underside of the plate and the surface of the bone by compression at the interface. In order to ensure absolute stability, the frictional resistance must be greater than the forces produced during rehabilitation. Bicortical screws are essential for this type of fixation.
LCP Compact Foot/Compact Hand

LCP 2.0 implants

Plates

- LCP plate 2.0, straight, 4–8 holes (X47.344–348)
- LCP T-plate 2.0 (X47.615)
- LCP condylar plate 2.0 (X47.349)
- LCP Y-adaption plate 2.0 (X47.350)
- LCP T-adaption plate 2.0 (X47.351)

Standard screws

Cortex screws 2.0 mm, self-tapping, with Stardrive T6 (X01.356–381)

LCP locking screws

LCP locking screws 2.0 mm, self-tapping, with Stardrive T6 (X01.876–900)
LCP 2.4 implants

Plates

LCP plate 2.4, straight, 4–8 holes (X49.674–678)

LCP T-plate 2.4 (X49.615)

LCP condylar plate 2.4 (X49.679)

LCP Y-adaptation plate 2.4 (X49.669)

LCP T-adaptation plate 2.4 (X49.670)

Standard screws

Cortex screws Ø 2.4 mm, self-tapping, with Stardrive T8 (X01.756–790)

LCP locking screws

LCP locking screws Ø 2.4 mm, self-tapping, with Stardrive T8 (X12.806–830)

Buttress pin

Buttress pin 1.8 (head LCP 2.4), with Stardrive T8 (400.190–193)
LCP 2.7 implants

Plates

<table>
<thead>
<tr>
<th>Plate Description</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCP plate 2.7, straight, 4–7 holes (X49.680–683)</td>
<td></td>
</tr>
<tr>
<td>LCP condylar plate 2.7 (X49.684)</td>
<td></td>
</tr>
<tr>
<td>LCP T-plate 2.7 (X49.685, X49.697)</td>
<td></td>
</tr>
<tr>
<td>LCP L-plate 2.7, oblique (X49.686–687, X49.698–699)</td>
<td></td>
</tr>
<tr>
<td>LCP L-plate 2.7 (X49.688–689, X49.701–702)</td>
<td></td>
</tr>
<tr>
<td>H-locking plate 2.7 (X49.690–691)</td>
<td></td>
</tr>
</tbody>
</table>

Standard screws

<table>
<thead>
<tr>
<th>Screw Description</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortex screws Ø 2.7 mm, self-tapping, with Stardrive T8 (X02.866–900; X02.965–969)</td>
<td></td>
</tr>
</tbody>
</table>

LCP locking screws

<table>
<thead>
<tr>
<th>Screw Description</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCP locking screws Ø 2.7 mm (head 2.4 mm), self-tapping, with Stardrive (X02.206–240)</td>
<td></td>
</tr>
</tbody>
</table>
Bending instruments

Bending pin for LCP plates 2.0 (329.921)
Bending pin for LCP plates 2.4 and 2.7 (329.922)

Drill sleeves

LCP drill sleeve 2.0, with scale, for drill bits Ø 1.5 mm (323.034)
LCP drill sleeve 2.4, with scale, for drill bits Ø 1.8 mm (323.029)
LCP drill sleeve 2.7, with scale, for drill bits Ø 2.0 mm (323.033)

Drills

Drill bit Ø 1.5 mm, with marking, length 96 mm, 2-flute, for mini quick coupling (310.507)
Drill bit Ø 1.8 mm, with marking, length 96 mm, 2-flute, for mini quick coupling (310.508)
Drill bit Ø 2.0 mm, with marking, length 110 mm, 2-flute, for quick coupling (310.534)

Screwdriver shafts

Screwdriver shaft Stardrive 2.0, short/long, self-holding, for mini quick coupling (313.842/843)
Screwdriver shaft Stardrive 2.4/2.7, short/long, self-holding, for mini quick coupling (314.451/452)

Torque limiter

Torque limiter for screws 2.0, with mini quick coupling (0.4 Nm) (511.777)
Torque limiter for screws 2.4 and 2.7, with AO/ASIF quick coupling (0.8 Nm) (511.776)
Instrument overview

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Article name</th>
<th>2.0</th>
<th>2.4</th>
<th>2.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>391.951</td>
<td>Cutting pliers for plates 1.0 to 2.4</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>329.921</td>
<td>Bending pins for LCP plates 2.0</td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>329.922</td>
<td>Bending pins for LCP plates 2.4/2.7</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>347.901</td>
<td>Flat-nosed pliers, pointed, for plates 1.0 to 2.4</td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>391.963</td>
<td>Universal bending pliers, length 165 mm</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>323.200</td>
<td>Universal drill sleeve 2.0</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>323.202</td>
<td>Universal drill sleeve 2.4</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>323.260</td>
<td>Universal drill sleeve 2.7</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>323.034</td>
<td>LCP drill sleeve 2.0 with scale, for drill bits Ø1.5 mm</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>323.029</td>
<td>LCP drill sleeve 2.4 with scale, for drill bits Ø1.8 mm</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>323.033</td>
<td>LCP drill sleeve 2.7 with scale, for drill bits Ø2.0 mm</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>310.507</td>
<td>Drill bit Ø1.5 mm, with marking for mini quick coupling</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>310.508</td>
<td>Drill bit Ø1.8 mm, with marking for mini quick coupling</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>310.534</td>
<td>Drill bit Ø2.0 mm, with marking for AO/ASIF quick coupling</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>319.005</td>
<td>Depth gauge for screws 2.0 and 2.4</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319.010</td>
<td>Depth gauge for screws 2.7</td>
<td>•</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>313.842/843</td>
<td>Screwdriver shaft Stardrive T6, 2.0, short/long</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>314.451/452</td>
<td>Screwdriver shaft Stardrive T8, 2.4, short/long</td>
<td>•</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>511.777</td>
<td>Torque limiter 2.0, with mini quick coupling (0.4 Nm)</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>511.776</td>
<td>Torque limiter 2.4/2.7, with AO/ASIF quick coupling (0.8 Nm)</td>
<td>•</td>
<td></td>
<td>•</td>
</tr>
</tbody>
</table>
The following surgical technique is described using the example of an LCP T-plate 2.0. Implant handling is identical for the sizes 2.0, 2.4 and 2.7.

The article numbers for the required instruments are listed in the table on page 9. The instruments are colour-coded as follows: 2.0 blue, 2.4 violet, 2.7 orange. These instruments are identified in the text by an asterisk (*).

1

Reduce fracture

Reduce the fracture under the image intensifier and, if necessary, fix with Kirschner wires or reduction forceps.

2

Trim plate

Trim plate to the desired length using the cutting pliers* and remove the burrs.
3

Bend plate

Bend the plate using the flat-nosed pliers*. The bending pins* can be used to bend the round threaded holes.

Note: If possible, bend the plate between the combi-holes. Do not deform the combi-holes during bending as this may hinder the subsequent insertion of locking screws.

4

Position plate

Position the plate over the reduced fracture and, if necessary, fix provisionally with Kirschner wires or reduction forceps.

5

Determine screw type

Depending on the indication and situation in each case, standard screws and/or LCP locking screws may be inserted. If both cortex and locking screws are used in one plate, the cortex screws must be inserted first in order to compress the plate against the bone before the locking screws are inserted.

Note: If angularly-stable buttress pins are used, one screw per bone fragment must be inserted additionally.
Predrill screw hole

Using the universal drill sleeve*, predrill the screw hole either neutrally or off-centre.

Determine screw length

Determine the screw length with the depth gauge*.

Insertion of standard screws
6c

Pick up screw

Select and pick up the matching screw using the Stardrive screwdriver shaft* and appropriate handle (311.01X).

6d

Insert standard screw

Insert self-tapping standard screw either neutrally or off-centre.

6e

Insert additional standard screws

Insert additional standard screws depending on the corresponding indication and situation.
LCP Compact Foot/Compact Hand

Insertion of locking screws

7a
Insert LCP drill sleeve
Screw the LCP drill sleeve* into the desired plate hole at right angles to the plate.

7b
Predrill screw hole and determine screw length
Predrill screw hole through the LCP drill sleeve* using the appropriately sized drill bit with marking*. Read off the screw length directly on the scale of the drill sleeve. Then remove the drill sleeve.
Alternatively, the screw length can be determined using the depth gauge*.
7c

Pick up screw

Select and pick up the matching screw using the self-holding Stardrive screwdriver shaft* and the appropriate handle (311.01X).

![Screw diagram]

2.0: T6
2.4: T8
2.7: T8

7d

Insert self-tapping locking screw

a For manual insertion of LCP locking screws, use the self-holding Stardrive screwdriver shaft and the appropriate handle (311.01X).

b For mechanical insertion of LCP locking screws 2.7* (head LCP 2.4), attach the 0.8 nm torque limiter* to the Colibri drive unit (532.001). Insert the Stardrive 2.4/2.7 screwdriver shaft* into the torque limiter and pick up the LCP locking screw. To insert the screw, start the drive unit slowly, increase the speed and then reduce again before the screw is fully tightened. The torque is automatically limited and a clearly audible clicking signifies that the torque limit has been reached. Stop the drive unit and disconnect from the screw.

Note: Overtightening the LCP screws can cause thread deformation, making subsequent screw removal impossible. We therefore recommend the use of a screwdriver shaft with a mini quick coupling and appropriate handle (311.01X) or a torque limiter (511.77X).

7e

Insert additional locking screws

Insert additional locking screws depending on the indication and situation.
Implant removal

8

Remove implants

To remove the plate, first unlock all screws then definitively remove them in a second step, otherwise the plate may rotate while the last screw is being removed and cause soft tissue damage.